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We compute specific heat of the antiferromagnetic spin-1
2 Heisenberg model on the kagome lattice. We use

a recently introduced technique to analyze high-temperature series expansion based on the knowledge of
high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior
of the specific heat, as well as the ground-state energy. In the case of the kagome-lattice antiferromagnet, this
method predicts a low-temperature peak atT/J&0.1.
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I. INTRODUCTION

We consider the nearest-neighbor Heisenberg model on
the kagome lattice:

H = 2o
ki,jl

SW i ·SW j . s1d

Because of its unconventional properties, the spin-1
2 kagome

antiferromagnetsKAFd has been subject to an intense activ-
ity these last years. All studies agree that this frustrated two-
dimensional magnet has no long-ranged magnetic order at
zero temperature.1–9 Exact diagonalization studies have es-
tablished that the low-energy spectrum of the kagome-lattice
Heisenberg antiferromagnet has a large number of spin-
singlet states before the first spin 1 excited state.10 Among
the different theories developed to explain this unconven-
tional spectrum, short-range resonating valence-bondsRVBd
pictures have been proposed.11–15

The high-temperaturesHTd expansion of the specific heat
as been computed up to order 1/T16 by Elstner and Young.16

We have checked and extended this series to order 1/T.17

The additional term for the specific heat per site is given by
cvsTd= 3

2b2+¯ +1 845 286 680 253/366 912 000b17. Elst-
ner and Young analyzed the series through conventional Padé
approximants with the additional constraint that the specific
heat must vanish atT=0. At the highest orders, they found a
specific heat curve with a single maximum aroundT=1.3 but
with a large entropy deficit of about 40%:e0

`cvsTd /TdT
.0.6 lns2d. They concluded the existence of a low-
temperature structure corresponding to an entropy of about
40% of ln 2 and claimed that this low-energy structure could
not be accessed from the high-temperature expansion of the
specific heat. They argued that even though theclassical
kagome antiferromagnet has a nonvanishing ground-state en-
tropy, quantum fluctuations in the spin-1

2 model are expected
to lift this degeneracy.

In this paper, we revisit the question of the specific heat
with the help of a new method to analyze high-temperature
series data. Compared to the usual Padé approximant ap-

proach, this method17 takes advantage of additional informa-
tion on the system: the two sum rules on the energy and on
the entropy are exactly satisfied. In many simple systems
sone- and two-dimensional ferro- or antiferromagnetsd, this
technique allows one to compute accurately the specific heat
down to zero temperature,17 which is not the case if one does
a direct Padé analysis of the series. For the present kagome
model we show that this method provides rich semiquantita-
tive information on the specific heat curve, although a full
convergence down to zero temperature cannot be achieved.

II. DIRECT HIGH-TEMPERATURE EXPANSION
OF THE SPECIFIC HEAT

We reproduce here the first attempt by Elstner and
Young16 to compute the specific heat from its high-
temperature expansion alone. We use Padé approximants to
extrapolate the series. We impose the specific heat to vanish
at low temperature asT, T2, or T3. At orders 9 to 17, only six
such approximants do not develop poles or zeros in the in-
tervalTP g0,`g sFig. 1d. One should notice at this point that
the remaining Padé approximants agree reasonably well
down to zero temperature. This is usually not the case in a
two-dimensional antiferromagnet where even the position of
the peaksT.1d can hardly be obtained by the use of direct
Padé approximants to the series for the specific heat.17 From
this point of view, the HT series expansion of the kagome
model seems to have a faster convergence than models such
as the triangular-lattice antiferromagnet.

By integration of these approximants, we evaluate the
ground-state energye0=e0

`cvsTddT and the ground-state en-
tropy s0= logs2d−e0

`cvsTddT. These values are indicated in
Fig. 1. The ground-state energy is about −0.845, only slightly
highers0.02d than estimations obtained from exact diagonal-
izations. The entropy deficit is very large: 0.3f40% of
logs2dg. Elstner and Young16 argued that a low-temperature
peak should be present in the specific heat in order to com-
pensate the deficit of 40% of logs2d.18 However, this low-
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temperature peak should “contain” almost no energys2%d,
which means that such peak would have to occur at very low
temperatures. In order to estimate this temperature, one can
add ad-function peak to the curves of Fig. 1 in order to
recover the correct energy and entropy variations. This con-
strains both the locationstemperatureT1d and the weight of
the d peak. By averaging over the different curves of Fig. 1
one findsT1.0.05 sT1.0.08d for a ground-state energye0

=−0.865 se0=−0.875d. These estimates are in agreement
with the conclusions of the more elaborate treatment de-
scribed below.

III. ENTROPY METHOD

In this section we briefly summarize the method we use to
compute the specific heat. More details can be found in Ref.
17. The specific heatcv and the temperatureT can be ob-
tained from the entropys as a function of the energye using
basic thermodynamic relations:

Tsed = 1/s8sed, s2d

cvsed = −
s8sed2

s9sed
. s3d

From Eq.s3d one can convert17 a high-temperature series
for cvsT→`d into a series forsse→0d fe=0 atT=` for the
Hamiltonian of Eq.s1dg. The truncated series are plotted in
Fig. 2. Using Eq.s2d, the entropy can be plotted as a function
of temperaturesright of Fig. 2d. A good convergence is ob-
served down to relatively low energiesse,−0.75d but the
corresponding entropy remains very largefmore than 60% of
lns2dg, although the ground-state energy is not much lower

sthe ground-state energy lies between the dashed vertical
lines in Fig. 2d. These results are consistent with a direct
analysis of the series forcvsTd sFig. 1d. In addition, it appears
that the “true”ssed must be bent downward below the curves
of the truncated seriessshown in Fig. 2d betweene0 and
,−0.75 in order to reachs=0 at e=e0. Due to Eq.s3d, this
almost certainly implies a low-energysand therefore low-
temperatured peakin cvsTd. This paper makes this idea more
precise by computing the specific heat obtained by forcing
the entropy to vanish ate=e0.

The advantage of working onssed rather thancvsTd is that
a two-point Padé interpolation can be used to set the ground-
state energy and the total entropy of the system. However,
ssed is singular ate=e0 fsinceT=1/s8sed→0 whene→e0g.
For this reason one cannot directly approximatessed by a
rational fractionsPadé approximantd. If we assume that the
specific-heat behaves as

FIG. 1. sColor onlined Specific heat obtained from Padé ap-
proximants to the high-temperature series ofcvsTd. Only approxi-
mations of degreesfu,u+1g, sfu,u+2g and fu,u+3gd are consid-
ered. They vanish at zero temperature asT sT2 andT3d. The only six
such approximants from order 9 to 17 which are positive on the
positive real axis are shown. The ground-state energy per sitee0 and
entropy s0 obtained by integrating these Padé approximations is
indicated.

FIG. 2. sColor onlined Left: Series expansion forssed sentropy
per sited as a function of the energy per sitee. The result of the bare
series are displayed for orders fromb11 to b17. The dashed vertical
lines indicate upperse=−0.84267d and lowerse=−0.909952d rigor-
ous bounds on the ground-state energy in the thermodynamic limit
sRef. 19 Right: Same data as on the left panel but plotted as a
function of temperatureT=1/s8sed. For each curve the lowest tem-
perature corresponds toe=−0.909952slower boundd. The black
segment corresponds toe=−0.84267supper boundd.
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cv . sT/c0da s4d

at low temperaturesc0 has the dimension of an energyd and
sse0d=0, ssed behaves as

sse→ e0d .
sa + 1da/sa+1d

a
Se− e0

c0
Da/sa+1d

. s5d

The quantity

Gsed =
ssed1+1/a

e− e0
s6d

is then nonsingular ate=e0 and can be approximated by a
Padé form.20 The series forsse→0d must therefore be trans-
formed into a series forGse→0d before Padé approximants
can then be computed in the usual way. In what follows all
the Padé approximants will be approximations to this func-
tion Gsed. If no finite-temperature phase transition is ex-
pected, all approximants whereGsed has a pole or a zero, or
where s8sed or s9sed vanishes somewhere in the interval
ge0,0f must be discarded. The remaining ones are called
“physical” for brevity.

A. Low-temperature behavior of cv„T…

Unlike some simpler magnets where the nature of the
ground-state and elementary excitations is known,17 the

qualitative behavior of the specific heat whenT→0 is un-
known, although a,T2 scenario has been proposed.9,21

However, one of the striking facts about the model is the
unusually high density of statesimmediately abovethe
ground-state.10 From this it is natural to expect gapless el-
ementary excitations. If we assume quasiparticles with a dis-
persion relationek,kg we get a specific heatcv,Ta with
a=D /g in space dimensionD. The smany bodyd density of
states isrsE0+Wd,expfNsW/Nda/sa+1dg whereN is the sys-
tem sizefconsequence of Eq.s5d with e−e0=W/Ng. For an
energyW of order one above the ground state, a density of
statesr,1.15N was observed in exact spectra up toN=36
sites.10 If this indeed holds up to the thermodynamic limit, it
would imply a=0 sg=`d and an extensive entropy at zero
temperature. This is unlikely in the present model22 but this
result points to a rather flat dispersion relation of the excita-
tions, probably withg.1. In the following we will consider
the two casesg=1 sa=2d andg=2 sa=1d.23

B. Ground-state energy and convergence of the different Padé
approximants

In principle, the method above requires the knowledge of
the ground-state energye0. If the value ofe0 is exact we
expect the procedure to converge to the exactcv if the num-
ber of known terms in the HT series increases to infinity.

FIG. 3. sColor onlined Zero
temperature limit ofc0 fsee Eq.
s4dg for the different Padé approxi-
mants as a function of the ground-
state energy. Top: acv,sT/c0d
behavior is assumed at low tem-
perature. Bottom: cv,sT/c0d2.
The degreeu of the numerator of
each approximant is given. The
degree of the denominator isd
=n−u wheren is the order of the
series. Left: ordern=16. Right:
ordern=17. The number of physi-
cal approximantsNPaded is plotted
as a function ofe0 in each lower
panel.
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This is in agreement with our experience on solvable models
ssuch as the spin-1

2XY chain, for instance17d where the full
series as well ase0 are known exactly. Inversely, wrong val-
ues ofe0 cannot lead to any convergence as the limitingcv
would have to satisfy the HT series at all orders but would
have a different energy sum rule. As a consequence, whene0
differs from the true ground-state energy, the physical ap-
proximants gets fewersand/or more scatteredd when the or-
der of expansion gets larger. Of course, the smaller the error
on e0 the longer series is needed to observe this departure
from convergence. From this we assume that the existence of
a larger number of physical approximant is anindication that
e0 sand ad is closer to the exact value. However, because a
limited number of terms of the series are known, this only
provides qualitative information and does not allow one to
determine the energy completely.

From exact diagonalizations on systems with up to 36
sites, e0 was evaluated by Waldtmannet al.10 to be e0
=−0.865±0.015ssee also Refs. 26 and 27d. Variational cal-

culations as well as rigorous bounds one0 will be discussed
in a separate paper.19,28

The specific heat curve can be rather sensitive to the
choice ofe0. Sincee0 is not exactly known, it is important to
perform scans in order to see how the specific-heat curve
depends one0. We observe that, for some choice ofe0 many
Padé approximants at a given order give almost the same
specific heat curve whereas some other choice ofe0 leads to
some significant scattering in the specific heat curves. This
can conveniently be seen, for instance, by looking at the
value of the different Padé approximants ate=e0. Since
Gse0d andc0 fdefined by Eq.s4dg are simply related by

Gse0d =
a + 1

c0a1+1/a , s7d

we plot c0 fwhich has a direct physical meaning in terms of
cvsT→0dg in Fig. 3 as a function ofe0 for all physical Padé
approximants at orderb16 and b17 fboth for cvsTd,T and

FIG. 4. sColor onlined Specific
heat computed at orderb17 with
the ground-state energiese0

=−0.89 stopd, e0=−0.88 scenterd,
and e0=−0.865sbottomd. Left: cv
,T. Right: cv,T2. The different
curves correspond to all the physi-
cal Padés approximants. The de-
gree u of the numerator is indi-
catedsthe denominator has degree
d=17−ud.
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,T2 at low temperatureg. It turns out thatc0 is representative
of the full specific-heat curve in the sense that if two Padé
approximants give “close” values ofc0 ssay a relative differ-
ence less than 10−3d, their corresponding specific-heat curves
are similarstypical relative difference of 10−2d for all tem-
peratures. This low-temperature coefficientc0 is therefore a
useful quantity to monitor how thecvsTd result depends
on the choice of the degree of the Padé approximant.30 In
all cases the “optimal” energy region is arounde0
.−0.88±0.02.31 We also observe a gradual shift of the op-
timal region to higher energies as the order of the series is
increased. We analyzed this effect and performed several ex-
trapolations to the infinite-order limitsdata not shownd. It is
not clear, however, that this indirect method to determine the
ground-state energy is more accurate than the other available
estimates.19

C. Low temperature peak in cv„T…

The curves corresponding to all physical approximants at
order b17 for e0=−0.865,e0=−0.88, ande0=−0.89, and for

cv,T and cv,T2 are shown in Fig. 4. Although some un-
certainties remain concerning the ground-state energy of the
model as well as the low-temperature behavior of the specific
heat, the results are relatively well converged down toT
.0.7 and the location of the high temperature peak is almost
independent from the unknownsse0 andad and is in agree-
ment with previous studies.6,9,16,21 In addition, all the sce-
narios we investigated gave rise to a low-temperature peak
sor a shoulderd in the specific heat atT.0.02–0.1.

We also looked at the order dependence of the specific
heat curves. For a given value of the ground-state energy
some approximants give similar curves forcvsTd while some
others are “isolated.” The later ones can be recognized as
isolated curves in Fig. 3. According to our experience17 with
this method, those isolated approximants do not reflect the
convergence to the true function. We obtained the results of
Fig. 5 by keeping only the approximants whose value ofc0 is
at less than 3310−3 from the c08 of another approximant.
This selection was repeated from ordersb13 to b17 for the six
combinations of ground-state energies and low-temperature

FIG. 5. sColor onlined Specific
heat curves from orderb13 to b17

with e0=−0.89 stopd, e0=−0.88
scenterd, ande0=−0.865sbottomd.
The degree of the numerator of
each approximant is indicated and
each column corresponds to a
given ordersbnd of the seriessn
=13, 14, 15, 16, and 17 from left
to rightd. Left panels: cv,T.
Right panels:cv,T2. In all cases
the specific heat shows a maxi-
mum aroundT.1.3 fcorrespond-
ing to esTd.−0.7, see Fig. 2g and
a low-temperature peak sor
shoulderd.
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behaviors used before. As one can see, the low-temperature
structure appears to be a robust feature, although a conver-
gence of the full curve is not reached forT&0.6. Still, a
better convergence as a function of the order of the series
sand a larger number of physical Padé approximantsd is ob-
tained when the ground-state energy is lowse0=−0.89 or
e0=−0.88d. This suggests that the actual value ofe0 may be
lower than −0.865, althoughe0=−0.89 is probably too low
scompared to the available estimates1,10,26,27d.

For N=18 spins, exact diagonalizations16 gave a low-
temperature peak of the specific heat atT.0.2 and cv
.0.17. A hybrid method21 based on exact diagonalizations
and high-temperature series expansion gave a peak atT
.0.2 andcv.0.17 for N=36 ssee also Ref. 6d. Quantum
Monte Carlo simulations forN=72 spins6 indicated that a
peak may exist belowT.0.3 for this system. Those results
obtained for small systems are qualitatively consistent with
those of Fig. 5 but our peak is located at a lower temperature
by at least a factor of 2. We think that this discrepancy is
likely to be due to finite-size effects in previous studies.

IV. CONCLUSIONS

By means of a detailed high-temperature series analysis
we provided quantitative estimates for the specific heat curve
of the spin-12 Heisenberg antiferromagnet on the kagome lat-
tice. Those results show a low-temperature peak in the spe-
cific heat of the model forT&0.1, although its precise loca-
tion cannot be determined due to uncertainties on the
ground-state energy. The corresponding degrees of freedom
are also responsible for the large density of singlet states
observed in exact diagonalization studies but their nature, as
well as the nature of the ground state itself, remains to be
explained.
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